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We present one-shot compression protocols that optimally encode ensembles of N identically
prepared mixed states into O(logN) qubits. In contrast to the case of pure-state ensembles, we
find that the number of encoding qubits drops down discontinuously as soon as a nonzero error is
tolerated and the spectrum of the states is known with sufficient precision. For qubit ensembles,
this feature leads to a 25% saving of memory space. Our compression protocols can be implemented
efficiently on a quantum computer.

Storing data into the smallest possible space is of cru-
cial importance in present-day digital technology, espe-
cially when dealing with large amounts of information
and with limited memory space [1]. The need for sav-
ing space is even more pressing in the quantum domain,
where storing data is an expensive task that requires so-
phisticated error correction techniques [2–4].

For quantum data, Schumacher’s compression [5] and
its extensions [6–10] provide optimal ways to store in-
formation in the asymptotic limit of many identical and
independent uses of the same source. However, in many
situations there may be correlations from one use of the
source to the next. In such situations, it is convenient
to regard N uses of the original source as a single use of
a new source, which emits messages of length N . This
scenario is an instance of one-shot quantum data com-
pression [11]. An important example of one-shot com-
pression is when the states emitted at N subsequent mo-
ments of time are perfectly correlated, resulting in code-
words of the form ρ⊗Nx for some density matrix ρx and
some random parameter x. This situation arises when
the original source is an uncharacterized preparation de-
vice, which generates the same quantum state at every
use. For quantum bits (qubits), Plesch and Bužek [12]
observed that every ensemble of identically prepared pure
states can be stored without any error into log(N + 1)
qubits, thus allowing for an exponential saving of mem-
ory space. Recently, Rozema et al [13] brought this idea
into the realm of experiment, demonstrating a prototype
of one-shot compression in a photonic setup.

The possibility of implementing one-shot compression
in the lab opens new questions that require one to go
beyond the ideal case of pure states and no errors. First,
due to the presence of noise, real-life implementations
typically involve mixed states—think, e. g., of quantum
information processing with NMR [14], where the stan-
dard is to have thermal states at a given temperature,
or, more generally, of mixed-state quantum computing
[15–19]. For mixed states, the basic principle of pure-
state compression does not work: in the qubit case, for
example, projecting the quantum state into the smallest
subspace containing the code words does not lead to any
compression if the states ρ⊗Nx are mixed, because in that
case the smallest subspace is the whole Hilbert space.

As a result, it is natural to search for compression proto-
cols that work for mixed states and to ask which proto-
cols achieve the best compression performance. An even
more important question is how the number of qubits
needed to store data depends on the errors in the de-
coding. Tolerating a nonzero error is natural in real-life
implementations, which typically suffer from noise and
imperfections.

In this Letter we answer the above questions, propos-
ing compression protocols for ensembles of identically
prepared mixed states. We first analyze the zero-error
scenario, showing that the storage of N mixed qubits
with known purity and unknown Bloch vector requires a
quantum memory of at least 2 logN qubits. The size of
the required memory is twice that of the required mem-
ory for pure states, but it is still exponentially smaller
that the initial data size. The maximum compression
is achieved by a protocol that does not require knowl-
edge of the purity. We then investigate the more realistic
case of protocols with an error tolerance. When the pu-
rity is known with sufficient precision, we find out that
tolerating an error, no matter how small, allows one to
encode the initial data into only 3/2 logN qubits, plus
a small correction independent of N . Remarkably, the
discontinuity in the error parameter takes place as soon
as the prior knowledge of the purity is more precise than
the knowledge that could be gained by measuring the
N input qubits. The existence of a discontinuity is a
striking deviation from the pure-state case, for which we
prove that there is no significant advantage in introduc-
ing an error tolerance. Furthermore, we show that our
compression protocol can be implemented efficiently and
that the compression rate is optimal under the require-
ments that the encoding be rotationally covariant and
the decoding preserve the magnitude of the total angular
momentum. These assumptions are relevant in physical
situations where the mixed states are used as indicators
of spatial directions [20, 21] and the decoding operations
are limited by conservation laws [22–27]. All our results
can be generalized to quantum systems of arbitrary fi-
nite dimension, where we quantify how the presence of
degeneracy in the spectrum affects the compression rates.

Let us start from the qubit case, assumingN to be even
for the sake of concreteness. We denote by E : H⊗N →
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Henc (D : Henc → H⊗N ) the encoding (decoding) chan-
nel, where H is the Hilbert space of a single qubit and
Henc is the Hilbert space of the encoding system. For an
ensemble of identically prepared qubit states {ρ⊗Nx , px}
the average error of the compression protocol is

eN =
∑
x

px

∥∥ρ⊗Nx −D ◦ E
(
ρ⊗Nx

)∥∥
2

, (1)

‖A‖ denoting the trace norm. We consider ensembles
where all the states ρx have the same purity, which is
assumed to be perfectly known (this assumption will be
lifted later). Let us write ρx as ρn = p |n〉〈n| + (1 −
p) |−n〉〈−n|, where |n〉 denotes the two-dimensional pure
state with Bloch vector n = (nx, ny, nz) and p ≥ 1/2
is the maximum eigenvalue. We focus on mixed states
(p 6= 1), excluding the trivial case p = 1/2, in which the
ensemble consists of just one state. For p 6∈ {1, 1/2}, we
call the ensemble {ρ⊗Nn , pn} complete if the probability
distribution pn is dense in the unit sphere. The typi-
cal example is an ensemble of mixed states with known
purity and completely unknown Bloch vector. For ev-
ery complete ensemble we demonstrate a sharp contrast
between two types of compression: (i) zero-error com-
pression, wherein the decoded state is equal to the initial
state, and (ii) approximate compression, wherein small
errors are tolerated. In the zero-error case we have the
following

Theorem 1. The minimum number of logical qubits
needed to compress a complete N -qubit ensemble is
d2 log(N + 2) − 2e. Every compression protocol that has
zero error on a complete ensemble must have zero error
on every ensemble of identically prepared mixed states
and on every ensemble of permutationally invariant N-
qubit states.

Intuitively, the reason for the exponential reduction of
the number of qubits is that the states in the ensemble
are invariant under permutations and, therefore, they do
not carry all the information that could be encoded into
N qubits. This observation was anticipated by Blume-
Kohout et al in the context of state discrimination and
tomography [28]. The key point of Theorem 1 is the
optimality proof, which establishes that if a mixed-state
ensemble is complete, then compressing it is as hard as
compressing any arbitrary ensemble of permutationally
invariant states [29].

In preparation of our analysis of approximate compres-
sion, it is instructive to look into an optimal protocol
achieving zero-error compression. The starting point is
the Schur-Weyl duality [30], stating that there exists a
basis in which theN -fold tensor action of the group GL(2)
and the natural action of the permutation group SN are
both block diagonal. In this basis, the Hilbert space of

the N qubits can be decomposed as

H⊗N '
N/2⊕
j=0

(Rj ⊗Mj) , (2)

where j is the quantum number of the total angular mo-
mentum, Rj is a representation space, in which the group
GL(2) acts irreducibly, andMj is a multiplicity space, in
which the group acts trivially. Now, since the state ρ⊗Nn

is invariant under permutations of the N qubits, one has

ρ⊗Nn =

N/2⊕
j=0

qj,N

(
ρn,j ⊗

Imj
mj

)
, (3)

where qj,N is a suitable probability distribution in j, ρn,j
is a quantum state on Rj , Imj is the identity on Mj ,
and mj is the dimension of Mj . From Eq. (3) it is
obvious that all information about the input state lies
in the representation spaces. Hence, ρ⊗Nn can be en-
coded faithfully into the state E

(
ρ⊗Nn

)
=
⊕

j qj,N ρn,j .
Such state has an exponentially smaller support, con-

tained in the space HN :=
⊕N/2

j=0 Rj , whose dimension

is dimHN = (N/2 + 1)
2
. Hence, the initial state can be

encoded into dlog dimHNe qubits—the amount declared
in Theorem 1. A perfect decoding is achieved by the
channel

D(ρ) :=
⊕
j

(
Pj ρPj ⊗

Imj
mj

)
, (4)

where Pj is the projector on the representation space Rj .
Considering that qubits are a costly resource, it is

worth pointing out a slight modification of the above pro-
tocol, which uses approximately logN qubits and logN
classical bits. The modified protocol consists in (i) mea-
suring the value of j, thus projecting N qubits into the
state ρn,j ⊗ Imj/mj , (ii) discarding the multiplicity part,
(iii) encoding the state ρn,j into dlog(N + 1)e qubits,
and (iv) transmitting the encoded state to the receiver,
along with a classical message specifying the value of j.
Knowing the value of j, the receiver can append an ad-
ditional system in the state Imj/mj and embed the state
ρn,j ⊗ Imj/mj into the right subspace.

Let us consider now the more realistic case of approxi-
mate compression. Here, the number of encoding qubits
drops down discontinuously.

Theorem 2. For every allowed error rate ε > 0 and
for every complete qubit ensemble, there exists a number
N0 > 0 such that for any N ≥ N0 the ensemble can
be encoded into 3/2 logN + log[4(2p− 1)

√
ln(2/ε)] qubits

with error smaller than ε.

The idea is to work out the explicit form of the prob-



3

ability distribution qj,N in Eq. (3), given by

qj,N =
2j + 1

2j0

[
B

(
N + 1, p,

N

2
+ j + 1

)
−B

(
N + 1, p,

N

2
− j
)]

(5)

where B(n, p, k) is the binomial distribution with n trials
and with probability p, and j0 = (p − 1/2)(N + 1). For
large N , the distribution qj,N is approximately the prod-
uct of a linear function with the normal distribution of
variance (N + 1)p(1− p) centered around j0. In order to
compress, we get rid of the tails: for every ε > 0, we select

a set Sε :=
{
j0 − b

√
ln(2/ε)Nc, . . . , j0 + b

√
ln(2/ε)Nc

}
and we compress the state ρ⊗Nn into the encoding space
Henc =

⊕
j∈Sε Rj , by applying the quantum channel

E(ρ) :=
⊕
j∈Sε

TrMj
[ Πj ρΠj ] +

∑
j 6∈Sε

Tr [Πj ρ] ρ0 , (6)

where Πj is the projector onRj⊗Mj , TrMj is the partial
trace overMj , and ρ0 is a fixed state with support inside
Henc. The encoding space has dimension

dimHenc =
∑
j∈Sε

(2j + 1) ≤ (2j0 + 1)

(
2

√
N ln

2

ε
+ 1

)
,

growing as N3/2. The initial state can be recovered, up
to error ε, by a suitable decoding channel [29].

Theorem 2 guarantees that N identical copies of a
mixed state with known purity can be stored faithfully
to ε into 3/2 logN qubits, plus an overhead that is dou-
bly logarithmic in 1/ε. This result is good news for fu-
ture implementations, because the overhead grows slowly
with the required accuracy. For example, when p = 0.6,
N = 20 identically prepared qubits with Bloch vectors
pointing in arbitrary direction can be compressed into 8
qubits with an error smaller than 1%. In addition to the
fully quantum version of the protocol, one can construct
a hybrid version where the initial state is stored partly
into qubits and partly into classical bits, as discussed in
the zero-error case. In the hybrid version, the disconti-
nuity between zero-error and approximate compression
pertains to the number of classical bits needed to com-
municate the value of j, which decreases from logN to
1/2 logN as soon as a nonzero error is tolerated.

Our result highlights a radical difference between
mixed and pure states: for mixed states, every finite
error tolerance ε > 0 allows one to reduce the size of
the compression space from the original 2 logN qubits
to 3/2 logN qubits. Such a discontinuity does not take
place for pure states: for pure states with completely
unknown Bloch vector, every compression protocol with
tolerance ε requires at least (1− 2ε) logN qubits [29].

It is worth commenting on the importance of know-
ing the purity. Our approximate protocol requires the

purity to be perfectly known, so that one can encode
only the subspaces where the quantum number j is in
a strip around the most likely value. If the purity is
only partially known, the protocol can be adapted by
broadening the size of the strip, i. e., by changing the set
Sε. Specifically, suppose that the eigenvalues of ρn are
known up to an error ∆p = O(N−γ), with γ ≥ 1/2. In
this case, the number of encoding qubits can be reduced
to 3/2 logN + g(ε, γ) where g is a function depending on
ε and γ, but not on N . Hence, the discontinuity between
zero-error and approximate compression persists. How-
ever, the situation is different if the eigenvalues are known
with less precision: if the error in the specification of the
eigenvalues scales as N−γ with γ < 1/2, then the num-
ber of encoding qubits becomes (2− γ) logN . Quite in-
triguingly, the separation between the two regimes takes
place exactly when the knowledge of the eigenvalues be-
comes more precise than the knowledge that could be
extracted through spectrum estimation [31]. Note that
our protocol can be combined for free with spectrum es-
timation, which only requires measuring the value of j.
However, the a posteriori knowledge of the measurement
outcome cannot replace the a priori knowledge of the
spectrum: indeed, finding the outcome j leads to esti-
mating the maximum eigenvalue as p̂ = 1/2 + j/(N + 1)
[31] and then to encoding the state ρn,j into dlog(2j+1)e
qubits. In order to decode, the receiver needs a classi-
cal message communicating the value of j, which requires
dlog(N/2+1)e bits in the one-shot scenario. This leads to
the same resource scaling as in the zero-error case, i. e.,
approximately logN qubits to send the encoded state
and logN bits to communicate j.

The protocol of Theorem 2 is optimal within the physi-
cally relevant class of protocols constrained by covariance
under rotations and by the preservation of the magnitude
of the angular momentum. More precisely, we have the
following [29].

Theorem 3. Every compression protocol that encodes
a complete N -qubit ensemble into (3/2− δ) logN qubits
with covariant encoding and a decoding that preserves the
magnitude of the total angular momentum will necessar-
ily have error e ≥ 1/2 in the asymptotic limit.

Let us now discuss the complexity of the compression
protocol. To operate on the input state we use the Schur
transform [12, 32, 33], which transforms the initial N
qubits together with O(logN) ancillary qubits into three
registers: (i) the index register, where the value of j
is stored into the state of log(N/2 + 1) qubits, (ii) the
representation register, which uses log(N + 1) qubits to
encode the representation spaces, and (iii) the multiplic-
ity register, where the multiplicity spaces are encoded
into O(N) qubits (see Fig. 1). Since the implementation
of the Schur transform in a quantum circuit is approxi-
mate, we focus on approximate compression, so that the
Schur transform error can be absorbed into the compres-
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FIG. 1. A quantum circuit for encoding. The Schur
transform turns the initial N qubits together with K =
O(logN) ancillary qubits into three registers: the index reg-
ister J , the representation register R, and the multiplicity
registerM. The multiplicity register is discarded. The index
register is encoded into N/2+1 qubits by the position embed-
ding VN/2+1. The qubits in positions outside Sε are discarded
and the remaining qubits are reencoded into dlog |Sε|e qubits.

FIG. 2. A quantum circuit for decoding. The first op-
eration is the position embedding V|Sε|, which produces |Sε|
output qubits. The jth of these qubits controls the gener-
ation of a maximally mixed state of rank mj (achieved by
the controlled operation Gj , represented explicitly in the blue
inset for mj = 4). The third step is the initialization of
L = N/2 + 1 − |Sε| qubits which are put in positions corre-
sponding to values of j outside Sε. After a total of N/2 + 1
qubits are in place, the inverse of the position embedding
is performed, followed by the inverse of the Schur trans-
form. The output of the circuit is a state on N qubits and
K = O(logN) ancillas, which are finally discarded.

sion error. Let us analyze first the encoding. The first
step is the approximate Schur transform, whose com-
plexity is poly(N, log 1/ε′), ε′ being the approximation
error [32, 33]. We set ε′ to be vanishing exponentially in
N , resulting in a complexity poly(N) for the implemen-
tation of the Schur transform. After the Schur trans-
form has been performed, the encoding circuit embeds
the index register into an exponentially larger register
of N/2 + 1 qubits, transforming the state |j〉 into the
state where the jth qubit is set to |1〉 and the rest of

the qubits are set to |0〉 [12]. We refer to this trans-
formation as position embedding and denote it by VD,
where D is the dimension of the register that is being
embedded (in this case D = N/2 + 1). The point of
position embedding is to physically encode the value of
j in a form that makes it easy to check whether or not
j belongs to the set Sε. In fact, such a check can be
equivalently implemented on a classical computer. After
this step, the circuit discards the qubits in positions out-
side the set Sε and transforms the remaining qubits into
log |Sε| qubits, by applying V −1|Sε|. Now, the complexity

of position embedding is upper bounded by D(logD)2

[12]. Since j ranges from 0 to N/2, the total complex-
ity of the position embedding and of its inverse scales as
N(logN)2. From the above reasoning, it is clear that the
bottleneck of the encoding is the implementation of the
Schur transform, which leads to an overall complexity of
poly(N) for the encoding circuit. The situation is simi-
lar for the decoding, which also uses position embedding
to perform operations depending on j (see Fig. 2). The
only new parts are the initialization of N/2 + 1 − |Sε|
qubits in the index register and the preparation of maxi-
mally mixed states of rank mj in the multiplicity register,
which can be approximately generated with exponential
precision in O(N2) operations [29]. Summing over the
values of j in Sε, we then obtain a number of opera-
tions upper bounded by O(N2)|Sε| = O(N5/2). From
the above count it is clear that the overall complexity
is polynomial in N . In addition to the computational
complexity, it is worth discussing the size of the ancillary
systems needed in our compression protocol. Since the
multiplicity register is discarded, the Schur transform in
our protocol needs only an ancilla of O(logN) qubits [28].
The position embeddings require ancillas of size O(N),
but, as mentioned earlier, they can be implemented on
a classical computer. Hence, the total number of qubits
that need to be kept coherent throughout our protocol
scales only as O(logN).

Our compression protocol, presented for qubits, can
be generalized to quantum systems of arbitrary dimen-
sion d. In this case, an ensemble of N identically
prepared rank-r states with known spectrum can be
compressed with error less than ε into approximately(
2dr − r2 − 1

)
/2 logN qubits. In addition, one can take

advantage of the presence of degeneracies and further re-
duce the number of qubits: every time the same eigen-
value appears in the spectrum the number of qubits is re-
duced by at least 1/2 logN(see [29] for the exact value).
Again, the protocol can be implemented efficiently and
is optimal under suitable symmetry assumptions [29].

In this Letter we showed how to efficiently store en-
sembles of identically prepared quantum systems into an
exponentially smaller memory space. For mixed states
we discovered that, whenever a nonzero error is allowed,
the size of the memory is cut down in a discontinuous
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way, provided that the spectrum of the state is known
with sufficient precision. Intriguingly, the dropoff in the
memory size takes place as soon as the prior informa-
tion about the eigenvalues is more than the information
that could be extracted by a measurement on the input
copies. Our approximate compression protocols can be
implemented efficiently on a quantum computer.
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Here we show the optimality of our the error protocol in the main text. Specifically, we show that no zero-error
protocol exists that compresses a complete ensemble of mixed states into less than d2 log(N + 2)− 2e.
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The zero error condition

The condition for zero-error compression requires that the average error defined as

eN =
∑
n

pn

∥∥ρ⊗Nn −D ◦ E
(
ρ⊗Nn

)∥∥
2

= 0 . (7)

This condition immediately implies ‖D ◦ E(ρ⊗Nn ) − ρ⊗Nn ‖ = 0 for every n except for a zero-measure set. Since the
Hermitian operator D ◦ E(ρ⊗Nn ) − ρ⊗Nn has only zero eigenvalues, it must be a null operator. Hence, the channel
C := D ◦ E must fix ρ⊗Nn , namely that

C(ρ⊗Nn ) = ρ⊗Nn (8)

for every n except for a set of zero measure. Since pn has full support on the Bloch sphere, the above condition holds
for a dense set of points on the Bloch sphere. As a result, for every Bloch vector n there exists a sequence

{
ρ⊗Nnk

}
of

Bloch vectors satisfying Eq. (8) such that limk→∞ nk = n and

lim
k→∞

ρ⊗Nn′k
= ρ⊗Nn .

Consequently, we have

∥∥D ◦ E(ρ⊗Nn )− ρ⊗Nn

∥∥
1

=

∥∥∥∥D ◦ E ( lim
k→∞

ρ⊗Nn′k

)
− lim
k→∞

ρ⊗Nn′k

∥∥∥∥
=

∥∥∥∥ lim
k→∞

[
D ◦ E(ρ⊗Nn′k

)− ρ⊗Nn′k

]∥∥∥∥
= 0,

which implies that C(ρ⊗Nn ) = ρ⊗Nn for every vector n on the Bloch sphere.

The algebra associated to the fixed points of a channel

Here we develop a technique that generates fixed points of a given channel starting from an initial set of fixed
points. Our technique is based on a result by Blume-Kohout et al [34] characterizes the fixed points. Specifically,
Theorem 5 of Ref. [34] guarantees that one can find a decomposition of the Hilbert space as H =

⊕
k (Lk ⊗Mk),

with the property that the fixed points of a given channel acting on H are all the operators of the form

A =
⊕
k

(
A(k) ⊗ ω(k)

0

)
, (9)

where A(k) is an arbitrary matrix on Lk and ω
(k)
0 is a fixed non-negative matrix on Mk. Using this fact, we develop

a technique that generates fixed points of a channel starting from an initial set of fixed points.

Proposition 1. Let Fix(C) be the set of fixed points of channel C, let {Ax}x∈X ⊂ Fix(C) be a subset of non-negative
fixed points, and let µ(dx) be a non-negative measure on X. Then, the set of operators

A = E−1/2 Fix(C)E−1/2 , E :=

∫
µ(dx) Ax ,

is a matrix ∗-algebra (i. e. a matrix algebra closed under adjoint). Moreover, one has E1/2AE1/2 ⊆ Fix(C).

[Notation: for a non-invertible operator E, we define E−1 as the inverse on the support of E.]
Proof. Writing each operator Ax in the form (9), we obtain

E =
⊕
k

(
E(k) ⊗ ω(k)

0

)
, E(k) =

∫
µ(dx)A(k)

x .



7

Hence, for a generic fixed point A ∈ Fix(C), decomposed as in Eq. (9), we have

E−1/2AE−1/2 =
⊕
k

[(
E(k)

)−1/2
Ak

(
E(k)

)−1/2
⊗ Pk ,

]

where Pk is the projector on the support of ω
(k)
0 . Since each Ak is a generic operator on Lk, we have

E−1/2 Fix(C)E−1/2 =
⊕
k

[B(Sk)⊗ Pk] ,

where B(Sk) denotes the algebra of all linear operators on the subspace Sk = Supp
[
E(k)

]
. Hence, A =

E−1/2 Fix(C)E−1/2 is an algebra and is closed under adjoint. On the other hand, we have

E1/2AE1/2 =
⊕
k

[
B(Sk)⊗M (k)

0

]
,

meaning that every operator in E1/2AE1/2 is of the form (9)—that is, it is a fixed point.

The minimal algebra required by the zero error condition

Let us apply Proposition 1 to the channel C = D ◦ E , resulting from the concatenation of the encoding and the
decoding in a generic zero-error protocol. By the zero-error condition, all the states ρ⊗Nn are fixed points. The states
can be decomposed as

ρ⊗Nn =

N/2⊕
j=0

qj,N

(
ρn,j ⊗

Imj
mj

)
. (10)

A priori, this block decomposition could be completely unrelated with the block decomposition of Eq. (9). Proving
that the two decompositions coincide will be the main part of our argument.

Choosing the measure µ(dx) in Proposition 1 to be the invariant measure over n, the average operator E is given
by

E =

N/2⊕
j=0

qj,N

(
Ij
dj
⊗
Imj
mj

)
.

Hence, the algebra A defined in Proposition 1 must contain all the operators of the form

E−1/2 ρ⊗Nn E−1/2 =

N/2⊕
j=0

(
dj ρn,j ⊗ Imj

)
,

for every unit vector n. Hence, A must contain the smallest algebra Amin generated by the above operators. We will
now characterize this algebra:

Proposition 2. If the states in Eq. (10) are not maximally mixed, Amin contains the matrix algebra of all operators
on the symmetric subspace, corresponding to j = N/2 in the decomposition (10).

Proof. Let us express the state ρ = p|0〉〈0|+(1−p)|1〉〈1| as ρ = e−βZ/Tr[e−βZ ], Z = |0〉〈0|− |1〉〈1| for a suitable
β ≥ 0. By definition, for every unitary U ∈ SU(2), the algebra Amin contains the operator

AU := E−1/2(UρU†)⊗NE−1/2

=

N/2⊕
j=0

dj

Tr
[
e−βJ

(j)
z

] (U (j) e−βJ
(j)
z U (j)† ⊗ Imj

)
, J (j)

z =

j∑
m=−j

m |j,m〉〈j,m| (11)
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where U (j) denotes the (2j + 1)-dimensional irreducible representation of SU(2). Moreover, since the algebra Amin is
closed under linear combinations, Amin must contain the operator

Xl =

∫
dU χ

(l)
U AU ,

where χ
(l)
U are the characters of the irreducible representations of SU(2) given by χ

(l)
U = Tr[U (l)]. Let us set l = N . In

this case, the orthogonality of SU(2) matrix elements eliminates all terms in the block decomposition of ρ⊗N , except
for the term with j = N/2. Notice that in this case the multiplicity subspace is trivial. Hence, one has

XN =

∫
dU χ

(N)
U dN/2 U

(N/2) ρN/2 U
(N/2)† ρN/2 =

e−βJ
(N/2)
z

Tr
[
e−βJ

(N/2)
z

] .
The matrix elements of XN can be computed explicitly as〈
N

2
, n

∣∣∣∣ XN

∣∣∣∣N2 , n′
〉

=
dN/2

Tr
[
e−βJ

(N/2)
z

] ∫ dU χ
(N)
U

 N/2∑
m=−N/2

e−βm
〈
N

2
, n

∣∣∣∣U (N/2)

∣∣∣∣N2 ,m
〉〈

N

2
,m

∣∣∣∣U (N/2)†
∣∣∣∣N2 , n′

〉
= δn,n′ (−1)n

dN/2
〈
N
2 , n,

N
2 ,−n

′|N, 0
〉

dN Tr
[
e−βJ

(N/2)
z

]
 N/2∑
m=−N/2

(−e−β)m
〈
N

2
,m,

N

2
,−m

∣∣∣∣N, 0〉


= δn,n′ (−1)n
dN/2

〈
N
2 , n,

N
2 ,−n

′|N, 0
〉

dN Tr
[
e−βJ

(N/2)
z

]
 N/2∑
m=−N/2

(N !)2(−e−β)m

(N/2−m)!(N/2 +m)!
√

(2N)!


= δn,n′ (−1)n+N/2

dN/2(N !)eβN/2(1− e−β)N
〈
N
2 , n,

N
2 ,−n

′|N, 0
〉

dN
√

(2N)! Tr
[
e−βJ

(N/2)
z

] ,

〈j1,m1, j2,m2|J,M〉 denoting the Clebsch-Gordan coefficient. Note that the Clebsch-Gordan coefficient in the above
expression is nonzero if and only if n = n′. As a consequence, the operator XN has full support.

Now, since Amin is an algebra, it must contain XN as well as the whole Abelian algebra generated by it. In
particular, it must contain the projector on the support of XN—which is nothing but PN/2, the projector on the
symmetric subspace. Moreover, it must contain all the operators of the form

AU,N/2 = PN/2AUPN/2 ∝ U (N/2) e−βJ
(N/2)
z U (N/2)† ∀U ∈ SU(2) .

Finally, for β 6= 0, it is easy to see that the smallest algebra Amin,N/2 containing the above operators is the algebra
B(RN/2). This can be easily seen by von Neumann’s double commutant theorem: If an operator B commutes with
the non-degenerate Hermitian operator AU,N/2 for every U , then B must be proportional to the identity. Hence,
the double commutant of AN/2—equal to AN/2 itself—is the whole B(RN/2). In conclusion, we have the inclusion
B(RN/2) ⊆ Amin,N/2 ⊆ Amin.

Proposition 3. If the states in Eq. (10) are neither pure nor maximally mixed, then Amin is the full algebra generated
by the N -fold tensor representation of GL(2), namely

Amin =

N/2⊕
j=0

[
B(Rj)⊗ Imj

]
,

B(Rj) denoting the algebra of all linear operators on the representation space Rj.

Proof. We prove that Amin contains the algebra B(Rj) ⊗ Imj for every j. The proof is by induction, with
j starting from N/2 and going down to 0. For j = N/2 we know that Amin contains the algebra B(RN/2) of all
operators with support in the symmetric subspace. Let us assume that Amin contains all the algebras B(Rj) ⊗ Imj
with j ≥ j∗ + 1 and show that it must necessarily contain also the algebra B(Rj∗)⊗ Imj∗ . By construction, we know
that Amin contains all the operators AU of the form

AU =

N/2⊕
j=0

dj

Tr
[
e−βJ

(j)
z

] (U (j) e−βJ
(j)
z U (j)† ⊗ Imj

)
, J (j)

z =

j∑
m=−j

m |j,m〉〈j,m| .
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Since the states in Eq. (10) are not pure, all the blocks in the sum are non-zero. Moreover, the induction hypothesis
implies that Amin should also contain the operators A′U of the form

A′U =

j∗⊕
j=0

dj

Tr
[
e−βJ

(j)
z

] (U (j) e−βJ
(j)
z U (j)† ⊗ Imj

)
, U ∈ SU(2) .

Now, we can repeat the argument used in the proof of Proposition 2: by linearity, Amin must contain the operator

X2j∗ =

∫
dU χ

(2j∗)
U A′U

=
dj∗

Tr
[
e−βJ

(j∗)
z

] ∫ dU χ
(2j∗)
U

(
U (j∗) e−βJ

(j∗)
z U (j∗)† ⊗ Imj∗

)
.

Explicit calculation (same as in Proposition 2) shows that X2j∗ has full rank. Hence, the projector on the support of
X2j∗ is Pj∗ = Ij∗ ⊗ Imj∗ . Since Amin should contain this projector, it must also contain all operators of the form

A′U,j∗ = Pj∗A
′
UPj∗

∝ U (j∗)e−βJ
(j∗)
z U (j∗)† ⊗ Imj∗ , U ∈ SU(2) .

Again, using von Neumann’s double commutant theorem, it is easy to show that the smallest algebra containing all
the above operators is B(Rj∗)⊗ Imj∗ . In conclusion we proved that Amin must contain B(Rj∗)⊗ Imj∗ . By induction,
this proves the inclusion

Amin ⊇
N/2⊕
j=0

[
B(Rj)⊗ Imj

]
.

In the other hand, the definition of Amin implies the opposite inclusion. Hence, one must have the equality.

Zero-error compression of a complete ensemble implies zero error compression for every ensemble of
permutationally invariant states

Propositions 1 and 3 imply the following

Corollary 1. If the states (10) are neither pure nor maximally mixed, every channel C preserving them must preserve
all permutationally invariant states.

Proof. By Propositions 1 and 3, the channel C must satisfy

Fix(C) ⊇ Amin =

N/2⊕
j=0

[
B(Rj)⊗ Imj

]
,

meaning that the full algebra generated by the tensor representation of GL(2) is contained in the set of fixed points.

We are now in position to prove Theorem 1 in the main text:

Proof of Theorem 1. Suppose that a compression protocol has zero error on a complete ensemble of mixed
states. Then, Corollary 1 implies that the protocol should have zero error on all permutationally invariant states. In
particular, the protocol should be able to transmit without error the following ensemble of orthogonal pure states

S :=

{
ρj,m = |j,m〉〈j,m| ⊗

Imj
mj

, pj,m =
1

D

∣∣∣∣ j = 0, . . . , N/2 ,m = −j, . . . , j, D :=
∑
j

dj

 .

A lower bound on the dimension denc of the encoding space Henc is then obtained by considering the amount of
classical information carried by S. In detail, the lower bound can be calculated using the monotonicity of Holevo’s
chi quantity in quantum data processing. Holevo’s chi quantity of S [35] is defined as follows

χ (S) := H

∑
j,m

pj,mρj,m

−∑
j,m

pj,mH (ρj,m)
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with H(ρ) being the von Neumann entropy of the state ρ. Since the chi quantity is non-increasing under quantum
evolutions, in the zero-error scenario we have

χ (S) = χ (Senc) (12)

where Senc is the encoded ensemble Senc := {E(ρj,m), pj,m}. On the other hand, the dimension of the encoding
subspace is lower bounded by the chi quantity [8]

log denc ≥ χ (Senc) . (13)

The chi quantity for the ensemble S can be computed as χ (S) = logD . Combining this equality with Eqs. (12)
and (13) we get

denc ≥ D =

(
N

2
+ 1

)2

,

which concludes the optimality proof. The protocol showed in the main text saturates the bound.

PROOF OF THEOREM 2

As stated in the main text, we assume p > 1
2 , because for p = 1/2 the ensemble is trivial, consisting only of the

maximally mixed state.
We first notice that the error of the compression protocol is upper bounded as

eN =
1

2

∥∥ρ⊗Nn −D ◦ E
(
ρ⊗Nn

)∥∥ , ∀n ∈ S2

=
1

2

∥∥∥∥∥∥
∑
j 6∈Sε

qj,N

[
ρn,j ⊗

Imj
mj
−D(ρ0)

]∥∥∥∥∥∥
≤
∑
j 6∈Sε

qj,N , (14)

the last step following from the triangle inequality and from the fact that the trace distance of two states is upper
bounded by 2. Note that the upper bound is independent of n, meaning that the protocol works equally well for all
states with the same spectrum (or equivalently, for all states with the same purity).

At this point, it is enough to prove that the upper bound vanishes in the large N limit. To this purpose, we use
the expression for qj,N [Eq. (5) in the main text] and observe that one has

1− eN ≥
∑
j∈Sε

2(2j + 1)

j0
B

(
N + 1, p,

N

2
+ j + 1

)
−
∑
j∈Sε

2(2j + 1)

j0
B

(
N + 1, p,

N

2
− j
)

(15)

where j0 = (2p − 1)(N + 1)/2. The second summand in the r.h.s. of Eq. (15) is negligible in the large N limit:
precisely, it can be bounded as

∑
j∈Sε

2(2j + 1)

j0
B

(
N + 1, p,

N

2
− j
)
≤

N
2∑
j=0

2(2j + 1)

j0
B

(
N + 1, p,

N

2
− j
)

≤ 1

2p− 1

N
2∑
j=0

B

(
N + 1, p,

N

2
− j
)

≤ 1

2p− 1
exp

[
−2(2p− 1)2N2

N + 1

]
(16)

having used the Hoeffding’s inequality in the last step. Hence, this term goes to zero exponentially fast with N ,
Now, recall that we chose Sε to be the interval

Sε =
[
j0 − 1/2−

√
N ln(2/ε), j0 − 1/2 +

√
N ln(2/ε)

]
. (17)
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Setting j0 − j − 1/2 = x, we then obtain

eN ≤ 1−

√
N ln(2/ε)∑

x=−
√
N ln(2/ε)

(
1− x

j0

)
B (N + 1, p, p(N + 1)− x) +

1

2p− 1
exp

[
−2(2p− 1)2N2

N + 1

]

= 1−

√
N ln(2/ε)∑

x=−
√
N ln(2/ε)

B (N + 1, p, p(N + 1)− x) +
1

2p− 1
exp

[
−2(2p− 1)2N2

N + 1

]

≤ 2 exp

[
2N

N + 1
ln
ε

2

]
+

1

2p− 1
exp

[
−2(2p− 1)2N2

N + 1

]
≤ ε

2N
N+1 +

1

2p− 1
exp

[
−2(2p− 1)2N2

N + 1

]
In the second last step we have used the Hoeffding’s inequality. Now it can be seen that the right hand side of the
bound vanishes exponentially fast with N , and we can always find a N0 such that eN ≤ ε3/2 < ε for any N > N0.
The dimension of the encoded system is now

denc =
∑
j∈Sε

(2j + 1)

= 2(2p− 1)
√
N ln(2/ε)(N + 1)

An upper bound on the number of required qubits is given by

log denc = log

[
2(2p− 1)N

√
N ln

2

ε

]
+ log

(
1 +

1

N

)

≤ 3

2
logN + log

[
2(2p− 1)

√
ln

2

ε

]
+ 1

THE PURE STATE CASE: NO DISCONTINUOUS GAP BETWEEN ZERO-ERROR AND
APPROXIMATE COMPRESSION

Here we prove that the type of discontinuity highlighted by our Theorems 1 and 2 is specific to mixed states.

Consider the pure state ensemble
{

(|n〉〈n|)⊗N ,d2 n
}

, where |n〉 is the pure qubit state with Bloch vector n and d2 n

is the invariant measure on the Bloch sphere. Suppose that the state (|n〉〈n|)⊗N is encoded into a state ρn,enc on a
Hilbert space of dimension denc. Assuming that the compression error is bounded by ε, an argument by Horodecki [8]
gives a lower bound on denc. The argument is based on the following lemma, based on the Alicki-Fannes inequality

Lemma 1 ([36]). Let {ρx , px} be an ensemble of states and let {ρx,enc , px} be the ensemble of the encoded states. If
the compression protocol has error bounded by ε, then the following inequality holds

|χ ({ρx , px})− χ ({ρx,enc , px})| ≤ 2 [ε log din + η(ε)] , (18)

where din is the rank of the average state ρ =
∑
x pxρx and η(x) = −x lnx.

In our case, din is the dimension of the symmetric subspace, namely

din = dN
2

= N + 1 . (19)

Moreover, we have

χ
({

(|n〉〈n|)⊗N , d2 n
})

= H
(
IN

2
/dN

2

)
= log(N + 1). (20)
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and, by the Holevo’s bound [35],

χ
({
ρn,enc ,d

2 n
})
≤ log denc . (21)

In our case, we have din = dN
2

= N + 1. Hence, combining Eqs. (18), (19), (20), and (21) we obtain the bound

log denc ≥ (1− 2ε) log(N + 1)− 2η(ε).

Now, note that the r.h.s. is continuous in ε and tends to log(N + 1) when ε tends to zero. The value log(N + 1) is
exactly the minimum number of qubits needed to encode a generic state in the symmetric subspace with zero error.
Hence, as ε tends to zero, the number of qubits needed for approximate compression tends to the number of qubits
needed for zero-error compression.

PROOF OF THEOREM 3

Here we prove the optimality of our protocol among all compression protocols where the encoding is covariant and
the decoding preserves the magnitude of the total angular momentum. Precisely, we assume that

1. the encoding space Henc supports a unitary representation of the group SU(2), denoted by {Vg | g ∈ SU(2)}

2. the encoding channel satisfies the covariance condition

E ◦ Ug = Vg ◦ E , ∀g ∈ SU(2) , (22)

where Ug and Vg are the unitary channels defined by Ug(·) := Ug · U†g and Vg = Vg · V †g .

3. the decoding channel D preserve the magnitude of the total angular momentum, in the sense that, for every
input state ρ, one has

Tr
[
K2D(ρ)

]
= Tr

[
J2 ρ

]
, (23)

where K = (Kx,Ky,Kz) are the generators of the representation {Vg , g ∈ SU(2)} and J = (Jx, Jy, Jz) are the
generators of the representation {U⊗Ng , g ∈ SU(2)}.

Under these conditions, we can prove the optimality of the protocol presented in Theorem 3 of the main text.

Proof of Theorem 3. For the purpose of this proof, it is convenient to parametrize the mixed states ρn as
ρg = UgρU

†
g , where ρ is a fixed state and g is a generic element of SU(2). Let us decompose the encoding space as

Henc =
⊕
j

(
Rj ⊗ M̃j

)
, (24)

where j is the quantum number of the angular momentum, Rj is the corresponding representation space, and M̃j is
a suitable multiplicity space. By definition, one has

Henc ⊇ Span
{
Supp

[
E
(
ρ⊗Ng

)]
, g ∈ SU(2)

}
= Span [Supp (Ω)] , Ω :=

∫
d g E

(
ρ⊗Ng

)
. (25)

Since E is covariant, the state Ω satisfies the relation VgΩV
†
g = Ω ,∀g ∈ SU(2). Hence, Ω can be written in the block

diagonal form

Ω =
⊕
j∈S

(
Ij
dj
⊗ ωj

)
,

where ωj is a suitable state on the multiplicity space and S is a suitable set of values of the angular momentum
number. Combining the above decomposition with Eq. (25), we obtain the bound

denc ≥ rankΩ ≥
∑
j∈S

dj . (26)
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On the other hand, since the decoding preserves the magnitude of the angular momentum, one has

Tr[Πj D ◦ E
(
ρ⊗Ng

)
] = Tr[Π̃jE

(
ρ⊗Ng

)
] , ∀j = 0, . . . , N/2 ,∀g ∈ SU(2) ,

where Πj is the projector on Rj ⊗Mj while Π̃j is the projector on Rj ⊗ M̃j . Hence, we have∑
j∈S

Tr[ΠjD ◦ E
(
ρ⊗Ng

)
] = 1 , ∀g ∈ SU(2) , (27)

meaning that all the output states D ◦ E
(
ρ⊗Ng

)
are contained in the subspace HN :=

⊕
j∈S (Rj ⊗Mj). Hence, we

have

eN =
1

2

∥∥ρ⊗Ng − D ◦ E
(
ρ⊗Ng

)∥∥ ∀g ∈ SU(2)

≥ 1

2

∥∥PN [ρ⊗Ng − D ◦ E
(
ρ⊗Ng

)
PN
]∥∥+

1

2

∥∥(I⊗N − PN )
[
ρ⊗Ng − D ◦ E

(
ρ⊗Ng

)]
(I⊗N − PN )

∥∥
=

1

2

∥∥(I⊗N − PN )ρ⊗Ng (I⊗N − PN )
∥∥

≥
∑
j 6∈S

qj,N
2

(28)

where PN is the projector on HN . Now we prove that any protocol with denc = O
(
N3/2−δ), δ > 0, will have a

non-vanishing error. Recall from the main text that the probability distribution qj,N can be expressed as

qj,N =
2j + 1

2j0

[
B

(
N + 1, p,

N

2
+ j + 1

)
−B

(
N + 1, p,

N

2
− j
)]

(29)

where B(n, p, k) is the binomial distribution with n trials and with probability p and

j0 = (p− 1/2)(N + 1) .

Combing Eq. (28) with Eq. (29), we have

eN ≥
1

2
− 1

2

∑
j∈S

2j + 1

2j0
B

(
N + 1, p,

N

2
+ j + 1

)
.

We split the set S into two subsets S1 and S2, defined as

S1 = S ∩

[
j0 −

√
cN + 1

2
, j0 +

√
cN + 1

2

]
S2 = S \ S1

where c is an arbitrary constant. The error is then bounded as

eN ≥
1

2
(1− s1 − s2) sk :=

∑
j∈Sk

2j + 1

2j0
B

(
N + 1, p,

N

2
+ j + 1

)
, k = 1, 2 . (30)

We now bound s1 and s2. Let us start from s1: by definition, we have

s1 ≤
maxj∈S1

(2j + 1)

2j0

∑
j∈S1

B

(
N + 1, p,

N

2
+ j + 1

)

= O(1)
∑
j∈S1

B

(
N + 1, p,

N

2
+ j + 1

)

≤ O(1) |S1|B
(
N + 1, p,

N

2
+ j0 + 1

)
= O

(
N−1/2

)
|S1| . (31)
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In turn, S1 can be bounded from the relation

|S1|
(

min
j∈S1

2j + 1

)
≤
∑
j∈S1

(2j + 1)

≤ denc

= O
(
N3/2−δ

)
, (32)

which implies |S1| ≤ O(N1/2−δ). Inserting this relation into Eq. (31), we finally obtain

s1 ≤ O
(
N−δ

)
. (33)

Regarding s2, we have the bound

s2 ≤
N + 1

j0

 ∑
j≤j0−

√
cN+1
2

B

(
N + 1, p,

N

2
+ j + 1

)
=

1

p− 1/2

 ∑
j≤j0−

√
cN+1
2

B

(
N + 1, p,

N

2
+ j + 1

)
≤ e−c/2

p− 1/2
, (34)

the last inequality coming from Hoeffding’s bound.
Finally, combining the inequalities (30), (33), and (34), we obtain the lower bound

eN ≥
1

2

[
1−O

(
N−δ

)
− e−c/2

p− 1/2

]
,

Since the constant c is arbitrary, the bound becomes eN ≥ 1/2−O
(
N−δ

)
.

UPPER BOUND ON THE COMPLEXITY OF GENERATING APPROXIMATE MAXIMALLY MIXED
STATES

The decoding requires the preparation of maximally mixed states to be placed in the multiplicity register. For a
given value of j, this is accomplished by generating a maximally entangled state of rank mj . In the following we
present a three-step protocol for this purpose.

1. Choose an integer n = O(N) such that mj ∈ (2n−1, 2n]. Prepare n maximally entangled qubit states. The
resulting the state is ρ = [|Φ+〉〈Φ+|]⊗n, with |Φ+〉 = (|00〉+ |11〉)/

√
2 and lies in a space of dimension 22n.

2. Perform the measurement in the computational basis on one qubit of each entangled pair. The measurement
outcomes of the individual qubit measurements are saved in a sequence of n binary digits, let us denote it by y.

3. Compare the string y with the binary expression of mj . If y, as a number, is larger than mj , the protocol fails
and we have to restart by preparing again n maximally entangled qubits. Otherwise, we keep the remaining
qubits, which, on average, will be in a maximally entangled mixed state of rank mj .

The last step can be seen by noting down the quantum operation Cyes corresponding to the successful outcomes of
the projective measurement, given by

Cyes(σ) =
∑
y≤mj

|y〉〈y|σ|y〉〈y| .

The protocol is successful in more than half of the cases. For that reason, the probability of failure vanishes exponen-
tially in the number of repetitions l as pno ≤ 2−l. To ensure that the error is vanishing fast enough with the number
of state copies N , we repeat the protocol N times. Then, the complexity of the protocol is comprised of preparing the
qubit states, which takes O(N) steps, and from comparing the n digit binary strings on a classical computer, which
also takes O(N) steps. By repeating the protocol N times, the overall complexity yields O(N2). It is safe to run
the protocol N times to assure for an exponentially vanishing error, because the complexity of the decoding is still
dominated by the Schur transform.
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ZERO-ERROR COMPRESSION FOR QUANTUM SYSTEMS OF DIMENSION d > 2

In this and the following sections, we generalize our results to quantum systems of arbitrary finite dimension d <∞.

Upper bound on the number of encoding qubits

Theorem 4. In dimension d, every ensemble of N identically prepared mixed states of rank r can be encoded without
error into less than

(
2dr − r2 + r − 2

)
/2 log(N + d− 1) qubits.

The proof is based on the Schur-Weyl duality, which allows one to decompose the N -copy Hilbert space as

H⊗N '
⊕

λ∈YN,d

(Rλ ⊗Mλ) ,

where Rλ is a representation space, Mλ is a multiplicity space, and the sum runs over the set YN,d of all Young

diagrams of N boxes arranged in d rows, parametrized as λ = (λ1, . . . , λd), with λ1 ≥ λ2 ≥ · · · ≥ λd,
∑d
i=1 λi = N .

We use the notations

dλ = dimRλ

and

mλ = dimMλ.

Relative to this decomposition, every state of the form ρ⊗N where ρ has rank r can be cast into the form

ρ⊗N =
⊕

λ∈YN,r

qλ,N

(
ρλ ⊗

Imλ
mλ

)
,

where ρλ is a quantum state on Rλ, Imλ is the identity on Mλ, and qλ,N is a suitable probability distribution. Note
that only the Young diagrams with r rows or less are present here (for this fact, see e.g. [37]).

The proof of Theorem 4 makes use of the following lemmas:

Lemma 2. For every λ ∈ YN,r, one has dλ ≤ (N + d− 1)(2dr−r
2−r)/2.

Proof. The dimension can be expressed as

dλ =

∏
1≤i<j≤d(λi − λj − i+ j)∏d−1

k=1 k!
, (35)

cf. Eq. (III.10) of [38]. Since λi = 0 for i > r, we have the following chain of (in)equalities

dλ =

∏
1≤i<j≤r(λi − λj − i+ j) ·

∏
1≤i≤r<j≤d(λi − i+ j) ·

∏
r<i<j≤d(j − i)∏d−1

k=1 k!

≤
(N + r − 1)(

r
2) · (N + d− 1)r(d−r) ·

∏d−r−1
l=1 l!∏d

k=1 k!

≤ (N + d− 1)(2dr−r
2−r)/2∏d−1

k=d−r k!
.

Lemma 3. The total dimension of all the representation spaces corresponding to Young diagrams with no more than
r rows is upper bounded as ∑

λ∈YN,r

dλ < (N + d− 1)
2dr−r2+r−2

2 .
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Proof. By Lemma 2 one has ∑
λ∈YN,r

dλ ≤ (N + d− 1)
2dr−r2−r

2 |YN,r|

< (N + d− 1)
2dr−r2+r−2

2 ,

having used the equality |YN,r| =
(
N+r−1
r−1

)
[39] and the elementary bound

(
N+r−1
r−1

)
< (N+1)r−1 ≤ (N+d−1)r−1.

Proof of Theorem 4. A zero-error compression protocol is given by the following encoding and decoding channels:

E(ρ) =
⊕

λ∈YN,r

TrMλ
[ΠλρΠλ]

D(ρ′) =
⊕

λ∈YN,r

Pλρ
′Pλ ⊗

Imλ
mλ

,

where Πλ is the projector on Rλ ⊗Mλ and Pλ is the projector on Rλ. The encoding space is Henc =
⊕

λ∈YN,r Rλ
and has dimension denc =

∑
λ∈YN,r dλ, which we bound as

denc =
∑

λ∈YN,r

dλ

< (N + d− 1)
2dr−r2+r−2

2 ,

having used Lemma 3.

Lower bound on the number of encoding qubits used by the zero-error protocol

Here we give a lower bound on the dimension of the encoding space in the zero-error protocol described in the proof
of Theorem 4. Precisely, we have the following

Lemma 4. The total dimension of all the representation spaces corresponding to Young diagrams with no more than
r rows is lower bounded as ∑

λ∈YN,r

dλ ≥ c(r, d)N
2dr−r2+r−2

2 , (36)

where c is a suitable function.

Proof. For simplicity, we use the notation f(N, r, d) & g(N, r, d) to mean that there exists a function c(r, d) such
that f(N, r, d) ≥ c(r, d)g(N, r, d) for every N . If f(N, r, d) & g(N, r, d) and g(N, r, d) & f(N, r, d), then we write
f(N, r, d) ≈ g(N, r, d). With this notation, we have

dλ &
∏

1≤i<j≤d

(λi − λj) ,

having used Eq. (35). Consider the case when N is a multiple of r(r + 1)/2 and define s = 2N/r(r + 1). Define the
subset of Yang diagrams

Score =
{
λ ∈ YN,r | λi ∈

[
(r − i+ 1)s− s

2r
, (r − i+ 1)s+

s

2r

]
, ∀i = 1, . . . , r − 1

}
For every diagram in Score we have the lower bound

dλ &

 ∏
1≤i<j≤r−1

(λi − λj)

  ∏
1≤i≤r−1

(λi − λr)

  ∏
1≤i<r<j≤d

λi

  ∏
r<j≤d

λr


≥

 ∏
1≤i<j≤r

[
(j − i)s− s

r

]
 ∏

1≤i≤r−1

[
(r − i)s− s

2

]
 ∏

1≤i≤r<j≤d

(r − i)s


 ∏
r<j≤d

s

2


≈ s

2dr−r2−r
2

≈ N
2dr−r2−r

2 . (37)
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Now, the total dimension of the subspaces with Young diagrams in Score an be lower bounded as∑
λ∈Score

dλ & N
2dr−r2−r

2 |Score|

= N
2dr−r2−r

2

(s
r

)r−1
≈ N

2dr−r2−r
2 Nr−1

= N
2rd−r2+r−2

2 .

Since Score is a subset of YN,r, we obtain Eq. (36).

Following the steps adopted in the d = 2 case, it is also possible to show that the upper bound of Lemma 4 is
actually an upper bound for every zero-error protocol that works for a complete ensemble of mixed states—i. e. for
an ensemble of the form {ρ⊗Ng , pg} where the state ρg is non-degenerate and the probability distribution pg is dense
on SU(d). Essentially, the argument is based on the use of Proposition 3, which can be applied here to all the SU(2)
subgroups of SU(d).

APPROXIMATE COMPRESSION FOR QUANTUM SYSTEMS OF DIMENSION d > 2

Compression protocol

Here we consider ensembles of N identically prepared mixed states, each of them having the same spectrum. Every
such ensemble can be written in the form {ρ⊗Ng , pg}, where ρg is a density matrix of the form

ρg = Ugρ0U
†
g , g ∈ SU(d) ,

ρ0 is a rank-r density matrix with non-degenerate positive eigenvalues, and pg is a probability distribution over the
group SU(d). For ensembles of this form, we have the following

Theorem 5. For every ε > 0 there exists an integer N0 such that for every N ≥ N0 the ensemble {ρ⊗Ng , pg} can be
compressed with error less than ε into Nenc qubits, with

Nenc ≤
2dr − r2 − 1−m

2
log(N + d− 1) +

m+ r − 1

2
log

[
4d(d+ 1) ln(N + 1) + 8 ln

(
1

ε

)
+O

(
1√
N

)]
and m :=

∑r
i=1 µi, where µi be the cardinality of the set {j : j > i , pj = pi}. We notice that m = 0 when the spectrum

is non-degenerate.

The proof of the theorem is based on the Schur-Weyl decomposition

ρ⊗Ng =
⊕

λ∈YN,r

qλ,N

(
U (λ)
g ρ0,λ U

(λ) †
g ⊗ Imλ

mλ

)
, (38)

where ρ0,λ is a fixed density matrix on Rλ and U
(λ)
g is the irreducible representation of SU(d) acting on Rλ. The key

point is that the probability distribution qλ,N is concentrated on the Young diagrams such that the vector

pλ :=

(
λ1
N
, . . . ,

λd
N

)
(39)

is close to the vector of the eigenvalues of ρ0 [40, 41], listed as

p = (p1, . . . , pd) , p1 ≥ p2 ≥ · · · ≥ pr > pr+1 = · · · = pd = 0 . (40)

Precisely, we will use the following
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Lemma 5 ([40, 41]). Let pλ and p be the vectors defined in Eqs. (39) and (40), respectively, and let d(a, b) :=
1
2

∑
i |ai − bi| be the total variation distance between two vectors. Then, one has

Prob [λ : d(pλ, p) > x] ≤ (N + 1)d(d+1)/2 · e−2Nx
2

,

with Prob [λ : d(pλ, p) > x] :=
∑
λ: d(pλ,p)>x

qλ,N , qN,λ being the probability distribution in Eq. (38).

The idea of the proof is to discard all Young diagrams whose probability vector pλ falls outside in a ball of size
O(1/

√
N) around the vector p. The dimensions of the subspaces associated to the remaining diagrams can be bounded

with the following

Lemma 6. The maximum dimension of a subspace Rλ satisfying d(pλ, p) ≤ x is upper bounded as

dλ ≤ (4Nx+ r)m (N + d− 1)
2dr−r(r+1)

2 −m . (41)

Proof. The dimension can be bounded as

dλ =

∏
1≤i<j≤d(λi − λj − i+ j)∏d−1

k=1 k!

≤

∏
1≤i≤r

{[∏
i<j≤i+µi(λi − λj − i+ j)

] [∏
i+µi<j≤d (λi − λj − i+ j)

]}
∏d−1
k=1 k!

≤

∏
1≤i≤r

{[∏
i<j≤i+µi(4Nx+ µi)

] [∏
i+µi<j≤d (N + d− 1)

]}
∏d−1
k=1 k!

≤
∏

1≤i≤r(4Nx+ µi)
µi (N + d− 1)d−i−µi∏d−1
k=1 k!

≤ (4Nx+ r)m (N + d− 1)
2dr−r(r+1)

2 −m∏d−1
k=1 k!

,

having used the fact that the ball S = {λ ∈ YN,r : d(pλ, p) ≤ x} is contained in the hypercube S′ = {λ ∈ YN,r :
|λi/N − pi| ≤ 2x ,∀i = 1, . . . , r − 1}, so that, for pi = pj , i < j, one has λi − λj ≤ 4Nx.

Lemma 7. The total dimension of the subspaces satisfying d(pλ, p) ≤ x satisfies∑
λ∈YN,r: d(pλ,p)≤x

dλ ≤ (N + d− 1)
2dr−r(r+1)

2 −m(4Nx+ r)m+r−1 .

Proof. Immediate from Lemma 6 and from the fact that the ball S = {λ ∈ YN,r : d(pλ, p) ≤ x} is contained in the
hypercube S′ = {λ ∈ YN,r : |λi/N − pi| ≤ 2x ,∀i = 1, . . . , r − 1}, yielding the bound

|S| ≤ |S′| ≤ (4Nx)r−1 .

Proof of Theorem 5. To compress within an error ε, we choose the encoding and decoding channels

E(ρ) =
⊕
λ∈Sε

TrMλ
[ΠλρΠλ] ⊕ Tr

[
ρ
(
I⊗N −Πε

)]
ρfail

D(ρ′) =
⊕
λ∈Sε

(
Pλρ

′Pλ ⊗
Imλ
mλ

)
,

with Πε =
⊕

λ∈Sε Πλ, Supp(ρfail) ⊆ Henc =
⊕

λ∈Sε Rλ, and

Sε := {λ ∈ YN,r | d(pλ, p) ≤ xε} , xε =

√
d(d+ 1)/2 ln(N + 1) + ln(1/ε)

2N
.
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The value of xε is chosen in order to bound the compression error as

eN =
1

2

∥∥D ◦ E (ρ⊗Ng )
− ρ⊗Ng

∥∥ ∀g ∈ SU(d)

≤ 1

2
Tr
[
ρ
(
I⊗N −Πε

)]
‖D(ρfail)− ρg,fail‖ , ρg,fail :=

⊕
λ6∈Sε

qλ,N
Tr [ρ (I⊗N −Πε)]

(
U (λ)
g ρ0,λ U

(λ) †
g ⊗ Imλ

mλ

)
≤ Tr

[
ρ
(
I⊗N −Πε

)]
=
∑
λ6∈Sε

qλ,N

≤ (N + 1)d(d+1)/2 · e−2Nx
2

= ε ,

the last inequality coming from Lemma 5. On the other hand, the encoding subspace has dimension

denc =
∑
λ∈Sε

dλ

≤ (N + d− 1)dr−
r(r+1)

2 −m(4Nx+ r)m+r−1

≤ (N + d− 1)dr−
r(r+1)

2 −mN
m+r−1

2

[
4d(d+ 1) ln(N + 1) + 8 ln

(
1

ε

)
+O

(
1√
N

)]m+r−1
2

≤ (N + d− 1)
2dr−r2−1−m

2

[
4d(d+ 1) ln(N + 1) + 8 ln

(
1

ε

)
+O

(
1√
N

)]m+r−1
2

,

having used Lemma 7 and the definition of xε. Hence, the number of encoding qubits satisfies

Nenc ≤ log denc

≤ 2rd− r2 − 1−m
2

log(N + d− 1) +
m+ r − 1

2
log

[
4d(d+ 1) ln(N + 1) + 8 ln

(
1

ε

)
+O

(
1√
N

)]
.

Optimality proof in the presence of symmetry

Here we prove the converse of Theorem 5. Our proof is valid for protocols where the encoding is covariant and the
decoding preserves the nonabelian charges [42] identified by the Young diagrams. Precisely, we assume that

1. the encoding space Henc supports a unitary representation of the group SU(d), denoted by {Vg | g ∈ SU(d)}.

2. the encoding channel satisfies the covariance condition E ◦ Ug = Vg ◦ E , ∀g ∈ SU(d).

3. the decoding channel D preserves the nonabelian charges associated to SU(d), namely, for every input state ρ,
one has

Tr [ΠλD(ρ)] = Tr
[
Π̃λ ρ

]
∀λ ∈ YN,d , (42)

where Π̃λ is the projector on the direct sum of all the invariant subspaces of Henc with Young diagram λ.

By the same argument as in the qubit case, the error of the compression protocol satisfying the above assumption can
be lower bounded as eN ≥ (1/2)

∑
λ∈S qλ,N , with S being a subset of YN,r specified by the protocol. The encoding

dimension is given by denc =
∑
λ∈S qλ,N . We have the following theorem.

Theorem 6. Every compression protocol that encodes a complete N -qubit ensemble into(
2dr − r2 − 1−m

2
− δ
)

logN , δ > 0 ,

qubits with covariant encoding and a decoding that preserves the nonabelian charges will necessarily have error e ≥ 1/2
in the asymptotic limit. Here m :=

∑r
i=1 µi, where µi be the cardinality of the set {j : j > i , pj = pi}. We notice

that m = 0 when the spectrum is non-degenerate.
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To prove the theorem, we first define the cubic lattice

Hε =

{
λ ∈ YN,r

∣∣∣∣∣ λi ∈
[
piN −

√
N1+ε

2
, piN +

√
N1+ε

2

]
, ∀ i = 1, . . . , r − 1

}
(43)

for any constant ε ∈ (0, 1). With this definition, the sum of the probability qλ,N when λ 6∈ Hε vanishes exponentially
in N . Precisely, we have the following lemma.

Lemma 8. For the set Hε defined by Eq. (43), the following bound holds.∑
λ6∈Hε

qλ,N ≤ (N + 1)
d(d+1)

2 e−
Nε

8 .

Proof. For any Young diagram λ not in the set Hε, there exist at least one j such that |λj − piN | ≥
√
N1+ε/2. Thus

we have

d(pλ, p) ≥
1

2

∣∣∣∣λjN − pj
∣∣∣∣ ≥ 1

4
√
N1−ε

.

Substituting this fact into Lemma 5, we immediately get the following lemma.

Now we start to bound the probability distribution qλ,N within the set Hε. Notice that the exact expression of qλ,N
is given as [37]

qλ,N =
det ∆

det Σ
·mλ (44)

where the matrix Σ is independent of N (and thus its expression is not relevant to bounding the probability) and the
matrix ∆ is a rank r square matrix defined as the following.

∆ij =

µj−1∏
β=0

(λi + r − i− β)

 pλi+r−i−µjj , (45)

with µi defined in Theorem 6. Notice that we follow the convention
∏−1
i=0 f(i) = 1. We first prove the following bound

of det ∆.

Lemma 9. For any λ in the set Hε defined by Eq. (43), the following bound holds asymptotically for large N :

det ∆ . N
(1+ε)m

2

(
r∏
i=1

pλii

)
, m =

r∑
i=1

µi .

Proof. Suppose that there are k distinct positive values in the spectrum, and the i-th biggest value has degeneracy
ri. We can then divide the set {1, . . . , r} into k subsets L1 ∪ · · · ∪ Lk, corresponding to the distinct eigenvalues, so
that Li is the set of indices corresponding to the i-th biggest eigenvalue. Recalling that rj is the degeneracy of the
j-th eigenvalue, we have

Li =


i−1∑
j=1

rj + 1, . . . ,

i∑
j=1

rj

 .

Notice that, by definition, one has

pl = pk ∀ l, k ∈ Li. (46)

With the above definition, the spectrum now reads

p1 = · · · = pr1︸ ︷︷ ︸
L1

> pr1+1 = · · · = pr1+r2︸ ︷︷ ︸
L2

> · · · > p∑k−1
i=1 ri+1 = · · · = pr︸ ︷︷ ︸

Lk

> pr+1 = · · · = pd = 0.
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Correspondingly, we define a subgroup Pr of the group Sr, consisting of the product of permutations that act within
the subsets {Li}. Precisely,

Pr :=
{
σ(1) × σ(2) × · · · × σ(k) |σ(i) ∈ Sri ; i = 1, . . . , k

}
.

With the above definition, we divide det ∆ into two terms

det ∆ = t1 + t2

t1 =
∑
σ∈Pr

sgn(σ)

(
r∏
i=1

∆i σi

)

t2 =
∑
σ 6∈Pr

sgn(σ)

(
r∏
i=1

∆i σi

)
,

(47)

denoting by σi the index that comes from applying σ to i.
Let us bound t1. By definition, Pr contains every permutation σ such that pi = pσi for every i. Therefore, we have

t1 =
∑
σ∈Pr

sgn(σ)


r∏
i=1

µσi−1∏
β=0

(λi + r − i− β)

 pλi+r−i−µσiσi


=
∑
σ∈Pr

sgn(σ)


r∏
i=1

µσi−1∏
β=0

(λi + r − i− β)

 pλi+r−ii


(

r∏
i=1

p
−µσi
σi

)

=
∑
σ∈Pr

sgn(σ)


r∏
i=1

µσi−1∏
β=0

(λi + r − i− β)

 pλi+r−ii


(

r∏
i=1

p−µii

)

=

(
r∏
i=1

pλi+r−i−µii

) ∑
σ∈Pr

sgn(σ)

 r∏
i=1

µσi−1∏
β=0

(λi + r − i− β)

 .
Since i and σi are always in the same subset Ll (for suitable l), we can rewrite the term

∏r
i=1

∏µσi−1
β=0 (λi + r− i− β)

as
∏k
l=1

∏
i∈Ll

∏µσi−1
β=0 (λi + r − i− β). We then have

t1 =

(
r∏
i=1

pλi+r−i−µii

) ∑
σ∈Pr

sgn(σ)


k∏
l=1

∏
i∈Ll

µσi−1∏
β=0

(λi + r − i− β)


=

(
r∏
i=1

pλi+r−i−µii

)
k∏
l=1


∑

σ(l)∈Srl

sgn
(
σ(l)
)∏

i∈Ll

µ
σ
(l)
i

−1∏
β=0

(λi + r − i− β)




=

(
r∏
i=1

pλi+r−i−µii

)
k∏
l=1

 ∑
σ(l)∈Srl

sgn
(
σ(l)
)[∏

i∈Ll

(∆l)iσ(l)
i

]
=

(
r∏
i=1

pλi+r−i−µii

)(
k∏
l=1

det ∆l

)
.

Here ∆l is a rank rl square matrix defined as

(∆l)ij =

rl−j−1∏
β=0

(λi + r − i− β),

observing that µj assumes the values rl − 1, rl − 2, . . . , 1, 0 for the indices in Ll. The determinant of ∆l equals to
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1≤i<j≤rl(λi − λj + j − i). Combining this with the definition of Hε (43), we have

t1 =

 k∏
l=1

∏
1≤i<j≤rl

(λi − λj + j − i)

( r∏
i=1

pλi+r−i−µii

)

.

[
k∏
l=1

(√
N1+ε

) rl(rl−1)

2

](
r∏
i=1

pλi+r−i−µii

)

= N
(1+ε)m

2

(
r∏
i=1

pλi+r−i−µii

)

≈ N
(1+ε)m

2

(
r∏
i=1

pλii

)
. (48)

The last step follows from the fact that

m =

r∑
i=1

µi =

k∑
i=1

ri∑
j=1

(ri − j).

Next, we bound the second term t2 in Eq. (47) as

t2 ≤
∑
σ 6∈Pr

(
r∏
i=1

∆i σi

)

=
∑
σ 6∈Pr


r∏
i=1

µσi−1∏
j=0

(λi + r − i− j)

 pλi+r−i−µσiσi


≤
∑
σ 6∈Pr

[
r∏
i=1

(N + r − 1)µσip
λi+r−i−µσi
σi

]

= (N + r − 1)m
∑
σ 6∈Pr

[
r∏
i=1

p
λi+r−i−µσi
σi

]

= (N + r − 1)m
∑
σ 6∈Pr

[
r∏
i=1

(
pσi
pi

)λi+r−j−µσj ] r∏
j=1

p
λj+r−j−µσj
j


= (N + r − 1)m

∑
σ 6∈Pr

[
r∏
i=1

(
pσi
pi

)Npi+O(
√
N1+ε)

] r∏
j=1

p
λj+r−j−µσj
j


≈ (N + r − 1)m

∑
σ 6∈Pr

exp [−ND(p||σp)]

[
r∏
i=1

p
λi+r−i−µσi
i

]
,

where D(p||q) :=
∑
i pi ln(pi/qi) is the Kullback-Leibler divergence and σp := (σp1 , . . . , σpr ). Now, since σ 6∈ Pr, we

always have D(p||σp) > 0. Therefore, the second term in Eq. (47) vanishes exponential in N . Combining this fact
with Eq. (47) and Eq. (48) we get the desired bound on det ∆.

Lemma 10. For any λ in the set Hε defined by Eq. (43), the following bound holds asymptotically for large N .

qλ,N
dλ

. N−
2dr−r2−1−(1+ε)m

2 .

Proof. The dimension of Mλ is given by

mλ =
N !∏d

i=1(λi + d− i)!

∏
1≤i<j≤d

(λi − λj + j − i)
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(see e. g. [37]) and can be bounded as

mλ ≤
1

λd−11 λd−22 . . . λd−rr

(
N

λ

) ∏
1≤i<j≤d

(λi − λj + j − i)

. N−
2dr−r2−r

2

(
N

λ

) ∏
1≤i<j≤d

(λi − λj + j − i)

for any λ ∈ Hε. Substituting the above bound and the bound in Lemma 9 into Eq. (44), we have

qλ,N .
N

(1+ε)m
2

det Σ

(
r∏
i=1

pλii

)
·N−

2dr−r2−r
2

(
N

λ

) ∏
1≤i<j≤d

(λi − λj + j − i)

. N−
2dr−r2−r−(1+ε)m

2 m(N, p, λ)
∏

1≤i<j≤d

(λi − λj + j − i)

. N−
2dr−r2−1−(1+ε)m

2

∏
1≤i<j≤d

(λi − λj + j − i)

which holds for any λ ∈ Hε. The last inequality comes from the upper bound of the multinomial m(N, p, λ). Finally,
we get the desired bound of qλ,N/dλ by combining the above bound with the expression of dλ

dλ =

∏
1≤i<j≤d(λi − λj − i+ j)∏d−1

k=1 k!
.

Finally, we can bound the error of any compression protocol with an encoding set S and with the encoding dimension

denc = O
(
N

2dr−r2−1−m
2 −δ

)
as

eN ≥
1

2

∑
λ∈S

qλ,N

=
1

2

1−
∑
λ6∈S

qλ,N


≥ 1

2

1−
∑

λ6∈Hδ/m

qλ,N −
∑

λ∈Hδ/m∩S

qλ,N


≥ 1

2

1−
∑

λ6∈Hδ/m

qλ,N − max
λ∈Hδ/m

(
qλ,N
dλ

)∑
λ∈S

dλ


≥ 1

2

1−
∑

λ6∈Hδ/m

qλ,N − max
λ∈Hδ/m

(
qλ,N
dλ

)
· denc


&

1

2

[
1− (N + 1)

d(d+1)
2 e−

1
8N

δ
m −N− δ2

]
=

1

2

(
1−N− δ2

)
.


